Global Illumination Methods

Practical Course

5 December 2018
Till Niese, Jochen Görtler

Universität Konstanz

Work Package II

Tasks

1. Global depth-sorting
2. Diffuse shading
3. Procedural texturing
4. Octree implementation (suggested, but optional)

Date

This assignment is due December, 19th. Please bring your Laptop to class. If you have any questions regarding the assignment, just write us an email.

Task 1

Intersection test

Global depth-sorting

Task 2

Diffuse shading

- Place a light source in the scene.
- Calculate the surface normal at the hit point.
- Diffuse shading (without specular highlight) using lambertian shading.

$$
L_{d}=k_{d} I \max (0, n \cdot l)
$$

Task 3

Procedural texturing

Create a checkerboard texture and apply it to a plane and sphere.

Task 4

Octree

To improve rendering performance for a large number of objects and triangles.

```
/// Store an entity in the correct position of the octree.
void push_back(Entity* object);
/// Returns list of entities that have
/// the possibility to be intersected by the ray.
std::vector<Entity*> intersect(const Ray& ray) const;
/// Subdivides the current node into 8 children.
void Node::partition();
```


Cone - Ray intersection

An infinite cone can be described using the equation: $x^{2}+z^{2}-y^{2}=0$
The equation for a cone with the apex at p_{c} aligned along the line $p_{c}+v_{c} t$ is:
$\cos ^{2} \alpha\left(p-p_{c}-\left(v_{c} \cdot\left(p-p_{c}\right)\right) v_{c}\right)^{2}-\sin ^{2} \alpha\left(v_{c} \cdot\left(p-p_{c}\right)\right)^{2}=0$
To find the intersection point substitute point p on the cone with the equation for the ray: $p=p_{r}+v_{r} t$

$$
\cos ^{2} \alpha\left(p_{r}+v_{r} t-p_{c}-\left(v_{c} \cdot\left(p_{r}+v_{r} t-p_{c}\right)\right) v_{c}\right)^{2}-\sin ^{2} \alpha\left(v_{c} \cdot\left(p_{r}+v_{r} t-p_{c}\right)\right)^{2}=0
$$

Cone - Ray intersection

$$
\cos ^{2} \alpha\left(p_{r}+v_{r} t-p_{c}-\left(v_{c} \cdot\left(p_{r}+v_{r} t-p_{c}\right)\right) v_{c}\right)^{2}-\sin ^{2} \alpha\left(v_{c} \cdot\left(p_{r}+v_{r} t-p_{c}\right)\right)^{2}=0
$$

To simplify the equation replace $p_{r}-p_{c}$ with Δp

$$
\cos ^{2} \alpha\left(v_{r} t+\Delta p-\left(v_{c} \cdot\left(v_{r} t+\Delta p\right)\right) v_{c}\right)^{2}-\sin ^{2} \alpha\left(v_{c} \cdot\left(v_{r} t+\Delta p\right)\right)^{2}=0
$$

Cone - Ray intersection

$$
\cos ^{2} \alpha\left(v_{r} t+\Delta p-\left(v_{c} \cdot\left(v_{r} t+\Delta p\right)\right) v_{c}\right)^{2}-\sin ^{2} \alpha\left(v_{c} \cdot\left(v_{r} t+\Delta p\right)\right)^{2}=0
$$

The coefficients A, B, C of the quadratic equation, to solve t :

$$
\begin{aligned}
& A=\cos ^{2} \alpha\left(v_{r}-\left(v_{r} \cdot v_{c}\right) \cdot v_{c}\right)^{2}-\sin ^{2} \alpha\left(v_{r} \cdot v_{c}\right)^{2} \\
& B=2 \cos ^{2} \alpha\left(\left(v_{r}-\left(v_{r} \cdot v_{c}\right) \cdot v_{c}\right) \cdot\left(\Delta p-\left(\Delta p \cdot v_{c}\right) \cdot v_{c}\right)\right)-2 \sin ^{2} \alpha\left(v_{r} \cdot v_{c}\right)\left(\Delta p \cdot v_{c}\right) \\
& C=\cos ^{2} \alpha\left(\Delta p-\left(\Delta p \cdot v_{c}\right) \cdot v_{c}\right)^{2}-\sin ^{2} \alpha\left(\Delta p \cdot v_{c}\right)^{2}
\end{aligned}
$$

Cone - Ray intersection

Use the quadratic formula to solve it.

```
bool quadratic(double a, double b, double c, double* t0, double* t1) {
    double discriminant = b * b - 4 * a * c;
    if (discriminant < 0) {
        return false;
    } else {
        discriminant = std::sqrt(discriminant);
    *tO = ((-1 * b) + discriminant) / (2 * a);
    *t1 = ((-1 * b) - discriminant) / (2 * a);
    return true;
    }
}
```

For t_{0} and t_{1} you need to test if $t>=0$ and if the intersection point on the infinite cone is within the boundaries of the cone:
$v_{c} \cdot\left(\left(p_{r}-p_{c}\right)+v_{r} t\right)>0$ and $v_{c} \cdot\left(\left(p_{r}-p_{c}\right)+v_{r} t\right)<0$

For the base of the cone you would do a simple ray disc intersection

