
C++ Compact Course

Till Niese (Z 705)
till.niese@uni.kn

Alexander Artiga Gonzalez (Z 712)
alexander.artiga-gonzalez@uni.kn

9 April 2018

graphics.uni.kn

till.niese@uni.kn
alexander.artiga-gonzalez@uni.kn

Organizational and Scope

Sessions

I Day 1
I Overview (CMake, “Hello World!”)
I Preprocessor, Compiler, Linker
I STD Library
I Input-/Output-Streams

I Day 2
I Stack and Heap
I Pointer
I Classes

I Day 3
I const, constexpr

I Day 4
I Overloading
I Templates, Inline
I Default parameters
I Lambda functions

I Day 5
I assert, static
I Compiler flags
I ?

02

CMake (www.cmake.org)

CMake is an open-source, cross-platform family of tools designed to build, test and
package software.
CMake is used to control the software compilation process using simple platform and
compiler independent configuration files, and generate native makefiles and workspaces
that can be used in the compiler environment of your choice.

03

https://cmake.org/

CMakeLists.txt

cmake_minimum_required (VERSION 3.7)
project (HelloWorld)

set(CMAKE_CXX_STANDARD 14)

set(SOURCE_FILES main.cpp)
add_executable (HelloWorld ${ SOURCE_FILES })

Invoke from command-line:

$cmake <Path to dir with CMakeLists.txt >
$make

04

Popular IDEs with CMake support (selection).

IDE: Integrated Development Environment

CLion QtCreator Visual Studio KDevelop XCode

Linux x x x
Windows x x x (x)
Mac OS X x x x

Free 30 days x x x x

Note: Using CLion or QtCreator on Windows requires Cygwin (www.cygwin.com) or MinGW
(www.mingw.org) installed.

05

https://www.cygwin.com/
http://www.mingw.org/

CMake + Visual Studio (Windows)

1. open CMake (gui)
2. “Where is the source code” → select project folder
3. “Where to build binaries” → select build folder (e.g <Project folder>/build)
4. run “Configure”
5. select “Visual Studio XY 20XY” as “generator” and “Finish”
6. run “Generate”
7. open “ProjectName.sln” from build folder with “Visual Studio”
8. set “ProjectName” as StartUp Project (right click on it)
9. build release or debug, compile, run and enjoy

Similar for Xcode.
CLion, KDevelop and QtCreator offer direct import (select CMakeLists.txt directory).

06

Hello world!

#include <iostream>

int main(){
std::cout << "Hello world!" << std::endl;
return 0;

}

07

Hello world!

The compiler will only know identifiers that have been declared before usage.

#include <iostream>

void show_hello() {
std::cout << "Hello world!" << std::endl;

}

int main(){
show_hello();
return 0;

}

08

Hello world!

Compiler will report: Use of undeclared identifier show_hello, if the an identifier was used
before declaration or definition.

#include <iostream>

int main(){
show_hello();
return 0;

}

void show_hello() {
std::cout << "Hello world!" << std::endl;

}

09

Hello world!

Especially on windows, the following will keep the console window open if your program is
executed by Visual Studio or similar.

#include <iostream>

int main() {
std::cout << "Hello, World!" << std::endl;
std::cout << "Press enter to continue...";
std::cin.ignore(); // waits for input
return 0;

}

(In Visual Studio, Strg+F5 also keeps the console window open.)

10

Declaration and Definition

A declaration introduces an identifier and describes its type for the compiler. This allows the
compiler to use it before it is defined.

double f(int, double);
class foo;

11

Declaration and Definition

A definition actually instantiates/implements this identifier. It’s what the linker needs in
order to link references to those entities. These are definitions corresponding to the above
declarations:

double f(int i, double d) {return i+d;}
class foo {};

12

Hello world!

#include <iostream>

void show_hello();

int main(){
show_hello();
return 0;

}

void show_hello() {
std::cout << "Hello world!" << std::endl;

}

13

Preprocessor, Compiler and Linker

Preprocessor

Searches for instructions like: #include, #endif, #if,
#define, #ifdef,
I #include will copy the content of the file

referenced by include.
I #if, #ifdef, ... are use to conditionally

include/exclude code for the compiler for the
current compilation unit.

I #define is used to define a preprocessor variable
(can also be passed as compiler flag)

main.cpp

iostream

vector

preprocessed-main.cpp

14

Preprocessor, Compiler and Linker

Compiler
The Compiler will compile the source code that was composed by the preprocessing step, into
machine code instruction.

Each .cpp file will result in one translation unit

main.o

preprocessed-main.cpp

�le-n.o

proprocessed-�le-n.cpp

�le-1.o

proprocessed-�le-1.cpp

15

Preprocessor, Compiler and Linker

Linker
The linker will compose all generated translation unit into one executable. The linker will
check if all definitions for each declaration exists, and ensures that there are no duplicate
declaration.

main.o �le-n.o�le-1.o library-a library-b

executeable

16

Datatypes

Integral Datatypes
I char, unsigned char (at least 4Bit)
I short, unsigned short (at least 8Bit)
I int, unsigned int (at least 16bit)
I long, unsigned long (at least 32Bit)
I long long (at least 64Bit)

Floatingpoint Datatypes
I float (at least 32Bit), double (at least 64Bit)

Other Datatypes
I bool

I auto type will be automatically deduced from its initializer.

17

Datatypes

auto x1 = 1; // x1 will be an int
auto x2 = 1L; // x2 will be a long
auto x3 = 1.f; // x3 will be a float
auto x4 = 1.; // x4 will be a double
auto mc = MyClass();

The type of a variable defined with auto will not change during its lifetime:

auto mc = MyClass();
mc = 1.; // not valid, because mc is of type MyClass

auto is especially useful for template based or lambda functions. It would also allow to
change the used datatype as long as they are compatible in the given scenario.
But it could harm readability because it is not always obvious what type will be held by the
given variable.

18

Castings

C-Style-Casting:

int i = (int)f;

Disadvantage:
I C style cast are not checked at compile-time, and can fail at runtime.

19

Castings

C++-Style-Casting:
I static_cast

I dynamic_cast

I reinterpret_cast, const_cast do not use them until you are sure what they mean.
Disadvantage:
I It is more to write.

Advantages:
I It is easier to find typecast in the code.
I Intentions are conveyed much better

20

Implicit-Casting

int x = 2;
float y = 0.5;
int i = x*y;

is equivalent to

int x = 2;
float y = 0.5;
int i = static_cast<int>(static_cast<float>(x) * y);

21

Implicit-Casting

Could result in unexpected behaviour:

int x = 0;
float f = 0.8f;
x += f;
x += f;

x will be 0

22

STD Library

The std-library contains a huge number of classes and utility functions. The documentation
can be found here http://en.cppreference.com/w/.
Often used headers:
I iostream input- and output-streams like std::cout
I cmath common math functions

Data types and containers that will be used often:
I vector is a variable length container with random access
I array is fixed length container with random access
I list is a variable length linked list
I map is a variable length container with key value pairs
I string is container for strings

Including headers of the std library is done without the .h suffix #include <string>

23

Container and Strings

In tutorials or books you might find the usage of strings or array like objects that looks like this:

int anIntArray[] = {0, 1, 2, 3, 4};
int *anotherIntArray = new int[10];
const char * aString = "some string";

If you write your code never use new[] but use those instead:

std::array<int, 5> anIntArray = {0, 1, 2, 3, 4};
std::array<int, 10> anotherIntArray;
std::string aString = "some string";

24

Containers and Strings

Advantages using std containers and strings over c-style containers:
I Memory management is handled by the container
I A large number of utility functions, for e.g. transforming, sorting, data, ...
I compatibility with modern 3rd party libraries

25

Containers

To use containers you have to define the data-type hold by the containers using template
arguments.

std::array<int, 5> anIntArray;
std::vector<float> aFloatVector;
std::list<double> aDoubleList;

All containers have methods like size and empty. Containers with a dynamic size have
methods like push_back, pop_back, push_front and pop_front.

The number of methods a std complex type provides by itself is limited to the important
methods required by such a data type.

26

Iterator

All containers of the standard library offer access to the stored elements via iterators. Iterators
are a uniform way to traverse a set of elements without having to know how they are stored.
I The begin() method returns an iterator that points to the first element of the set
I The end() method returns an iterator that points to the past-the-last element of the set

Depending on the type of container, there may also be iterators that allow the elements to be
traversed backwards:
I The rbegin() method returns an iterator that points to the last element of the set
I The rend() method returns an iterator that points to the reverse past-the-last element of

the set

27

Iterator

I An iterator can be manipulated using ++ this will move the iterator to the next element in
the set.

I Iterators can be compared using the == operator
I If an iterator points to the last element in the set and ++ is called then the iterator will be

equal to end()

I To get the element the iterator is pointing to you need to derefence the iterator using the
* operator

28

Iterator

To iterate over a set of element a for loop can be used:

std::vector<int> vec = {10,20,30};
for(auto curr = vec.begin() ; it != vec.end() ; it++) {

std::cout << (*it) << std::endl;
}

In a for loop you have exact control in which range you want to iterate. However, when you
only want to iterate over all elements, you can also use the range base loop:

std::vector<int> vec = {10,20,30};
for(auto &elm : vec) {

std::cout << elm << std::endl;
}

29

Iterator

Especially with iterators you can see how useful the auto keyword is.
Without the auto keyword, the type of iterator must be specified completely:

std::vector<int> vec = {10,20,30};
for(std::vector<int>::iterator curr = vec.begin() ; it != vec.end() ; it++) {

std::cout << (*it) << std::endl;
}

In case of a std::vector this is still relatively simple, in case of more complex libraries, this
can quickly become very difficult to understand.

30

Iterator

The iteration over a std::map differs a bit, because the iterator does not point directly to the
element, but to the key value pair. The pair has two members:
I first that represents the key
I second that represents the value

std::map<int, std::string> m =
{

{ 1, "one" },
{ 2, "two" }

};

for(auto &pair : m) {
std::cout << pair.first << " " << pair.second << std::endl;

}

31

Iterator

In addition to iterators, containers might offer additional options for accessing the elements.
std::vector and std::map allow to access stored values using the [] operator:

std::vector<int> vec = {10,20,30};
std::cout << vec[0] << std::endl; // 10
vec[0] = 15;
std::cout << vec[0] << std::endl; // 15

32

Iterator

In case of a std::map you have to know, that if there is no entry for the key, a default element
of this type is created first. Because of that you should not use the [] operator to insert
elements into a map. You should use insert() or emplace() instead.

std::map<int,int> m;
m.insert(std::make_pair(1/*key*/,2/*value*/));
m.insert(std::pair<int,int>(1,3)); //same as with make_pair
m.emplace(1,4); //in-place

insert() and emplace() do nothing, if there is already an element with that key.
To change the value of an existing key, use [] operator, at() or find().

m[1] = 5; //inserts element, if key doesn’t exist
m.insert_or_assign(1,6); //inserts element, if key doesn’t exist (C++17)
m.at(1) = 7; //throws exception, if key doesn’t exist

auto result = m.find(1);
if (result != m.end()) //does nothing, if key doesn’t exist

result->second = 7;
33

Helper-Functions

All additional functionality is provided by helper functions. Those helper functions can be used
with most data type that conform to the interface of the data types in the std library.

The header algorithm (en.cppreference.com/w/cpp/algorithm) contains functions like:
I find

I erase

I sort

34

http://en.cppreference.com/w/cpp/algorithm

Helper-Functions

The std::find function can be used to check if an element is within a std::vector

int n = 2;
std::vector<int> v{0, 1, 2, 3, 4};

auto result = std::find(v.begin(), v.end(), n);

if (result != v.end()) {
std::cout << "v contains: " << n << std::endl;

} else {
std::cout << "v does not contain: " << n << std::endl;

}

std::find returns an iterator that points to the first found element that equals to n. Or
v.end() if n was not found

35

Output- and Input-Streams

A streaming operator is used read or write data from or to streams:
I « writes data to a stream
I » reads data from a stream

36

Output-Streams

Writing to the stream std::cout:

#include <iostream>

void show_hello() {
std::cout << "Hello world!" << std::endl;

}

Writing to a file:

#include <fstream>

void write_to_file() {
ofstream myfile;
myfile.open ("thefile.txt");
myfile << "Hello world!" << std::endl;

}

37

Input-Streams

Reading from a file stream:

#include <fstream>

void read_from_file() {
std::ifstream infile("thefile.txt");
int a, b;

if(infile.is_open()) {
infile >> a;
infile >> b;

} else {
std::cout << "could not open file." << std::endl;

}
}

38

Input-Streams - Error Handling

I Until C++11: If extraction fails (e.g. if a letter was entered where a digit is expected),
value is left unmodified and failbit is set.

I Since C++11: If extraction fails, zero is written to value and failbit is set.
The std::istream operator» functions return their left argument by convention (in case of
std::cin again std::cin), thus allowing the following:

int a, b, c;
infile >> a >> b; // (infile >> a) >> b:

while(std::cin >> c) {
std::cout << c << std::endl;

}

The latter makes use of operator bool (since C++11, operator void*() until C++11), that
returns true in case of no errors and false otherwise (e.g. if eofbit or failbit is set).

39

Stack vs Heap

I Stack: The stack is always reserved in a LIFO (last in first out) order; the most recently
reserved block is always the next block to be freed.

I Heap: Unlike the stack, there’s no enforced pattern to the allocation and deallocation of
blocks from the heap; you can allocate a block at any time and free it at any time.

I Objects created without the new keyword are created on the stack
I Objects created with the new keyword are created on the heap

Note: Objects created on stack might internally allocate memory on the heap (e.g.
std::shared_ptr, std::vector, std::string), whereas other elements will stay completely
on stack like std::array

40

Stack vs Heap

1 int main() {
2 bar elm1;
3 bar *elm2 = new bar();
4 bar *elm6;
5 if(elm1.x > 0) {
6 bar elm3;
7 elm6 = foo(elm3);
8 }
9 delete elm2;
10 delete elm6;
11 }

Stack Heap

41

Stack vs Heap

1 int main() {
2 bar elm1;
3 bar *elm2 = new bar();
4 bar *elm6;
5 if(elm1.x > 0) {
6 bar elm3;
7 elm6 = foo(elm3);
8 }
9 delete elm2;
10 delete elm6;
11 }

Line 2
Stack Heap

elm1

42

Stack vs Heap

1 int main() {
2 bar elm1;
3 bar *elm2 = new bar();
4 bar *elm6;
5 if(elm1.x > 0) {
6 bar elm3;
7 elm6 = foo(elm3);
8 }
9 delete elm2;
10 delete elm6;
11 }

Line 3
Stack Heap

elm1

elm2

43

Stack vs Heap

1 int main() {
2 bar elm1;
3 bar *elm2 = new bar();
4 bar *elm6;
5 if(elm1.x > 0) {
6 bar elm3;
7 elm6 = foo(elm3);
8 }
9 delete elm2;
10 delete elm6;
11 }

Line 4
Stack Heap

elm1

elm2

44

Stack vs Heap

1 int main() {
2 bar elm1;
3 bar *elm2 = new bar();
4 bar *elm6;
5 if(elm1.x > 0) {
6 bar elm3;
7 elm6 = foo(elm3);
8 }
9 delete elm2;
10 delete elm6;
11 }

Line 6
Stack Heap

elm1

elm2

elm3

45

Stack vs Heap

1 bar* foo(bar &elm3) {
2 bar elm4;
3 bar *elm5 = new bar();
4
5 return elm5;
6 }

Line 1
Stack Heap

elm1

elm2

elm3

46

Stack vs Heap

1 bar* foo(bar &elm3) {
2 bar elm4;
3 bar *elm5 = new bar();
4
5 return elm5;
6 }

Line 2
Stack Heap

elm1

elm2

elm3

elm4

47

Stack vs Heap

1 bar* foo(bar &elm3) {
2 bar elm4;
3 bar *elm5 = new bar();
4
5 return elm5;
6 }

Line 3
Stack Heap

elm1

elm2

elm3

elm4

elm5

48

Stack vs Heap

1 bar* foo(bar &elm3) {
2 bar elm4;
3 bar *elm5 = new bar();
4
5 return elm5;
6 }

Line 6
Stack Heap

elm1

elm2

elm3

elm5

49

Stack vs Heap

1 int main() {
2 bar elm1;
3 bar *elm2 = new bar();
4 bar *elm6;
5 if(elm1.x > 0) {
6 bar elm3;
7 elm6 = foo(elm3);
8 }
9 delete elm2;
10 delete elm6;
11 }

Line 7
Stack Heap

elm1

elm2

elm3

elm6

50

Stack vs Heap

1 int main() {
2 bar elm1;
3 bar *elm2 = new bar();
4 bar *elm6;
5 if(elm1.x > 0) {
6 bar elm3;
7 elm6 = foo(elm3);
8 }
9 delete elm2;
10 delete elm6;
11 }

Line 8
Stack Heap

elm1

elm2

elm6

51

Stack vs Heap

1 int main() {
2 bar elm1;
3 bar *elm2 = new bar();
4 bar *elm6;
5 if(elm1.x > 0) {
6 bar elm3;
7 elm6 = foo(elm3);
8 }
9 delete elm2;
10 delete elm6;
11 }

Line 9
Stack Heap

elm1

elm6

52

Stack vs Heap

1 int main() {
2 bar elm1;
3 bar *elm2 = new bar();
4 bar *elm6;
5 if(elm1.x > 0) {
6 bar elm3;
7 elm6 = foo(elm3);
8 }
9 delete elm2;
10 delete elm6;
11 }

Line 10
Stack Heap

elm1

53

Stack vs Heap

1 int main() {
2 bar elm1;
3 bar *elm2 = new bar();
4 bar *elm6;
5 if(elm1.x > 0) {
6 bar elm3;
7 elm6 = foo(elm3);
8 }
9 delete elm2;
10 delete elm6;
11 }

Line 11
Stack Heap

54

Copy, Reference and Pointer

// pass by copy
void foo(bar elm) {

// elm is a copy of element in main
elm.x = 10;

}

int main() {
bar elm;
elm.x = 0;

foo(elm);
std::cout << elm.x << std::endl; // will show 0
return 0;

}

55

Copy, Reference and Pointer

If passed by reference, then elm cannot be a nullptr.

void foo(bar &elm) {
// elm is the same element as in ’main’
elm.x = 10;

}

int main() {
bar elm;
elm.x = 0;

foo(elm);
std::cout << elm.x << std::endl; // will show 10

return 0;
}

If an element is passed as reference it is not obvious for the caller that elm might be changed.
56

Copy, Reference and Pointer

Whenever possible you should pass objects by const ref:

void foo(const bar &elm) {}

But this will only be possible if you do not need modify the element within the function.
Therefore, you can only call member functions declared as const on a const ref.

57

Copy, Reference and Pointer

If passed by pointer, then elm can be a nullptr.

void foo(bar *elm) {
// elm points to the same element as in ’main’
elm->x = 10;

}

int main() {
bar elm;

foo(&elm);
std::cout << elm.x << std::endl; // will show 10

return 0;
}

58

Raw pointer

auto *obj = new foo();
// ...
delete obj

Advantages:
I No internal overhead

Disadvantages:
I Object must be deleted manually, otherwise memory leaking will occur
I Pointer might point to an invalid memory address

As of C++11 you should use std::shared_ptr or std::unique_ptr instead of new

59

Shared pointer

auto obj = std::make_shared<foo>();

//retrieve the raw pointer of a shared pointer
auto *raw = obj.get();

Advantages:
I Deleting of the object is done automatically
I Pointer is either nullptr or is an valid object.

Disadvantages:
I If used incorrectly it might have a noticeable performance impact

Note: std::shared_ptr (and std::unique_ptr) use internally new to create the object, so
the object will be on the heap.

60

Shared pointer

shared_ptr can in most situations be used like regular pointers:

auto obj = std::make_shared<foo>();
obj->aMethod();

61

Passing a shared_ptr to a function can be done in two ways.
I As a raw pointer to the object, if the function only uses the object for the time being

called
I As a const reference to the shared pointer, if the function requires ownership for later use

62

You should pass it using a raw pointer if the function only uses the object for the time being
called:

void a_function_ptr(foo *obj) {
// uses ’obj’ only in this function

}

auto obj = std::make_shared<foo>();
a_function_ptr(obj.get());

63

You should pass it using a const reference if the function needs to claim ownership:

void a_function(const std::shared_ptr<foo> &ptr) {
// stores a copy of ’ptr’ somewhere for alter use

}

auto obj = std::make_shared<foo>();
a_function(obj);

This will avoid unnecessary increasing and decreasing of the internal usage pointer. The const
in this case only protects the std::shared_ptr from being modified, the object held by the
shared ptr can still be modified.

64

Shared pointer

To protect the object itself from being modified, the const has to be added to the type of the
std::shared_ptr:

void a_function(const std::shared_ptr<const foo> &ptr) {
}

auto obj = std::make_shared<foo>();
a_function(obj);

65

Weak pointer

std::weak_ptr<foo> weakPtr;

auto obj = std::make_shared<foo>();
weakPtr = obj;

obj = nullptr;
// weakPtr is expired at this point and will return a nullptr on lock

Advantages:
I Does not increase the use count, so the weak_ptr will not prevent an object from being

deleted.
Disadvantages:
I Before the object holding by a weak pointer can be used, a lock has to be called, and the

resulting shared_ptr has to be checked for nullptr.

66

Weak pointer

void a_function(const std::weak_ptr<foo> &pw) {
std::shared_ptr<foo> sp = pw.lock();
if(sp != nullptr) {

std::cout << "pointer is valid" << std::endl;
} else {

std::cout << "pointer is not valid" << std::endl;
}

}

It is not required or useful to check if the weak_ptr is expired before doing the lock, because
the pointer could (only in multithreaded environments) become invalid in between those calls,
so the result of nullptr has to be checked anyway.

67

Unique pointer

In contrast to std::shared_ptr only one std::unique_ptr is allowed hold a pointer to the
same object.
So the following will not be allowed:

std::unique_ptr<foo> ptr1, ptr2;

ptr1 = std::make_unique<foo>();
ptr2 = ptr1;

To move an object from one unique ptr to another std::move has to be used:

std::unique_ptr<foo> ptr1, ptr2;

ptr1 = std::make_unique<foo>();
ptr2 = std::move(ptr1);
// at this point ptr1 does not hold the object anymore

68

Unique pointer

But it is allowed to pass it by reference, because it will still be the same unique_ptr object.

void test(const std::unique_ptr<foo> &ptr) {}

std::unique_ptr<foo> ptr2;
ptr1 = std::make_unique<foo>();
test(ptr1);

But instead of passing it as reference you should just pass the raw pointer, because you don’t
transfer ownership in this case.

void test_ptr(foo *ptr) {}

std::unique_ptr<foo> ptr2;
ptr1 = std::make_unique<foo>();
test_ptr(ptr1.get());

69

Summary

I shared_ptr is an owning pointer with a shared ownership. This pointer ensures that the
object is released if no other shared pointer is pointing on that object anymore.

I weak_ptr is a pointer with a non-owning reference to an object manged by a shared_ptr.
I unique_pointer is an owing pointer with an exclusive ownership.
I Raw pointers (observer_ptr c++20) is a non-owning pointer. This pointer stores the

address of an object, but is not responsible for the object in any way. Raw pointer can
point to objects manged by a unique_pointer or shared_ptr, but won’t be set to
nullptr if those objects are deleted.

70

nullptr and NULL

nullptr was added with C++11 and replaces NULL.

In C++, the definition of NULL is 0, so there is only an aesthetic difference. A problem with
NULL is that people sometimes mistakenly believe that it is different from 0 and/or not an
integer. In pre-standard code, NULL was/is sometimes defined to something unsuitable and
therefore had/has to be avoided.

The advantage of nullptr over NULL is that it is an actual type (std::nullptr_t) and not
just an integral value.

71

nullptr and NULL

Test if a shared_ptr does not hold an object:

void test_ptr(const std::shared_ptr<foo> &ptr) {
if(ptr != nullptr) {

// has object
} else {

// has no object
}

}

72

nullptr and NULL

Test if a raw pointer does not hold an object:

void test_ptr(foo *ptr) {
if(ptr != nullptr) {

// has object
} else {

// has no object
}

}

73

nullptr and NULL

Setting a pointer to null :

std::shared_ptr<foo> ptr1 = nullptr;
foo *ptr1 = nullptr;

74

Classes and Structs

In C++ objects can be defined using class and struct:

class foo {
public:

foo() {}
~foo() {}

protected:
int m_somevalue;

};

struct foo {
foo() {}
~foo() {}

protected:
int m_somevalue;

};

75

Classes and Structs

The only difference between those are their default access-specifier.
In absence of an access-specifier for a base class, public is assumed when the derived
class is declared struct and private is assumed when the class is declared class.
Member of a class defined with the keyword class are private by default. Members of
a class defined with the keywords struct or union are public by default.

76

Classes and Structs

For a better readability of the class structure, it is useful to keep the method declarations and
definitions in separate files.
I The declarations will be stored in a .h file.
I The definitions will be stored in a .cpp file.

77

Classes and Structs

It is required to use an include guard to prevent an endless include loop in the preprocessing
step.
The classic standard conform way is:

#ifndef FOO_H_
#define FOO_H_

class foo {};

#endif

A more elegant - non standard - way that is supported by all compilers:

#pragma once

class foo {};

78

Classes and Structs

Class-Declaration (.h):

class foo {
public:

foo();
~foo();
int a_method(int a);

};

Class-Definition (.cpp):

#include "foo.h"

foo::foo() {}
foo::~foo() {}
int foo::a_method(int a) {}

79

Classes and Structs

Inheritance:

class polygon {
};

class triangle : public polygon {
};

80

Classes and Structs

Multiple inheritance:

class polygon {
};

class renderable {
};

class triangle : public polygon, public renderable {
};

In general it should be avoided to inherit from multiple classes.

81

Classes and Structs

Calling the base constructor:

class triangle : public polygon {
public:

triangle();
};

#include "triangle.h"

triangle() : polygon() {}

The order in which the constructors are called: first base class, then inheriting class.
The destructors are called in the inverse order.

82

Classes and Structs

Initialization of member fields:

class foo {
public:

foo(int a, int b) : m_a(a), m_b(b) {
}

int m_a;
int m_b;

};

83

Classes and Structs

The destructor ~foo() is called the moment the object is deleted. The destructor can be used
to perform some cleanup tasks. Before the existence of smart pointers the destructor was
required to free objects that where created using new and owned by the destructed object.

class foo {
public:

foo(int a, int b) {}
~foo() {

std::cout << "object is destructed" << std::endl;
}

};

84

Classes and Structs

Visibility of member fields and methods:
I public: access is not restricted
I protected: access only within the class or in an inheriting class.
I private: access only within the class

The keyword friend allows to add exceptions, but it should be avoided to use friend.

85

Classes and Structs

Visibility of member fields and methods:

class foo {
public:

foo(int a, int b) : m_a(a), m_b(b) {
}

private:
int m_a;
int m_b;

protected:
int m_c;

};

86

Classes and Structs

The keyword virtual has two usecase:
I pure virtual: to make abstract classes, requiring the inheriting class to define this method.
I late binding: the correct method call is determined at runtime.

87

Classes and Structs

Abstract class:

struct foo {
virtual void test() = 0; // pure virtual

};

struct bar : public foo {
void test() {

std::cout << "bar::test" << std::endl;
}

};

88

Classes and Structs

Without late binding:

struct foo {
void test() {

std::cout << "foo::test" << std::endl;
}

};
struct bar : public foo {

void test() {
std::cout << "bar::test" << std::endl;

}
};

auto b = std::make_shared<bar>();
std::shared_ptr<foo> f = b;
f->test(); // this will output "foo::test"
b->test(); // this will output "bar::test"

89

Classes and Structs

With late binding:

struct foo {
virtual void test() {

std::cout << "foo::test" << std::endl;
}

};
struct bar : public foo {

void test() override {
std::cout << "bar::test" << std::endl;

}
};

auto b = std::make_shared<bar>();
std::shared_ptr<foo> f = b;
f->test(); // this will output "bar::test"
b->test(); // this will output "bar::test"

90

Classes and Structs

Virtual destructor are important if delete is called on the pointer of the base class. Without
virtual only the base destructor will be called.

struct foo {
~foo() {

std::cout << "~foo" << std::endl;
}

};
struct bar : public foo {

~bar() {
std::cout << "~bar" << std::endl;

}
};

foo *b = new bar();
delete foo; // this will only call the destructor of "foo"

91

Classes and Structs

With virtual all destructors of the object held by the Base pointer are called.

struct foo {
virtual ~foo() {

std::cout << "~foo" << std::endl;
}

};
struct bar : public foo {

~bar() {
std::cout << "~bar" << std::endl;

}
};

foo *b = new bar();
delete b; // this will invoke the destructor of "bar" and "foo"

92

final

With the final keyword you can ensure that a method cannot be overwritten in a derived
class, or that you cannot derive from a class.
A method must be virtual for it to be declared as final.

class foo final{
};

class bar{
virtual void foo() final {}

};

93

Namespaces

namespaces are used to avoid name collisions between functions and classes/structs of
different projects.
It is recommended to always place a custom function in its own namespace.
The name of the namespace can be the name of your project:

namespace cpp_course_2017 {
void another_function() {
}

void test_function() {
another_function();

}
}

void main() {
cpp_course_2017::test_function();

}

94

const

The const keyword serves the following purposes:
I It ensures that a value cannot be changed
I A method defined as const cannot change a member of the class.
I To indicate that calling a method will not modify the object it belongs to.
I To indicate that values passed to a method/function will be unchanged

95

const

If a value is required to remain unchanged, then it should be defined as const. That way every
attempt to change this value will result in a compiler error.

Without const it would not be easy to recognise if the value was changed by mistake in a
different part of the program.

const int PI = 3.14159;

int main() {
PI = 2; // compiler will report an error that PI cannot be changed
return 0;

}

96

const

For functions/methods receiving values that will or should not be changed the const modifier
can be used in the parameter list.

This will show the person using this function that it is save to pass a value to it without the
need to worry that it might be changed.

void get_distance(const Point &p1, const Point &p2) {
p1.x = 0; // will show a compiler error

}

97

const

Beside this indication for the user, it will also ensures that the value can only passed to
subsequent functions that will not modify this value.

void set_to_zero(Point &p) {
p.x = 0;
p.y = 0;

}

void get_distance(const Point &p1, const Point &p2) {
set_to_zero(p1); // compiler error

}

set_to_zero cannot be called for p1 because p1 is const but set_to_zero requires a non
const reference.

98

const

In this example passing p1 to set_to_zero would work, because set_to_zero does not take
the argument as reference, but will receive a copy of p1 and because of that p1 will remain
unchanged.

void set_to_zero(Point p) {
p.x = 0;
p.y = 0;

}

void get_distance(const Point &p1, const Point &p2) {
set_to_zero(p1);

}

99

const

If an object is marked as const, then only the methods marked as const can be called on this
object.

class foo {
public:

void testA() const;
void testB();

};

int main() {
const foo a;

a.testA(); // is valid because testA is const
a.testB(); // will not compile because testB is not const

}

100

const

Defining const on methods ensures that, calling such a method will not change the object or
members of the object it belongs to:

struct Line {
float getLength() const {

start.x = 0; // compiler error
}
Point start;
Point end;

}

101

const

The const on the method does not affect the values passed to this function. So this example
p2 can still be modified, because the const only affect the p1 value on which copy_to is
called.

struct Point {
void copy_to(Point &dest) const {

dest.x = x;
dest.y = y;

}
float x;
float y;

};

Point p1;
Point p2;
p1.copy_to(p2);

102

const

const can also be used for member variables:

struct Node {
const int someValue = 10;

};

103

const

The only place where it is allowed to change such a constant member variable is in member
initializer list of the constructor.

struct Node {
Node(int id) : m_id(id) {}

const int m_id;
};

104

constexpr

The goal of constexpr depends on the context:
I For objects it indicates that the object is immutable and shall be constructed at

compile-time.
I For functions it indicates that calling the function can result in a constant expression and

can be evaluated at compile time.
In both situations it could allow certain computations to take place at compile time, literally
while your code compiles rather than when the program itself is run.

105

constexpr

int get_five() {return 5;}

int some_value[get_five() + 7];
// Create an array of 12 integers. Ill-formed C++

constexpr int get_five() {return 5;}

int some_value[get_five() + 7];
// Create an array of 12 integers. Legal C++11

106

Enumeration

An enumerated data type is used whenever a set of logically related constants has to be defined.

A typical enum might look something like this:

enum Colors {
kRed,
kBlue,
kGreen

};

107

Enumeration

Like in many other languages, the enums are internally represented by integral type and are by
default consecutively numbered starting by 0.

enum Colors {
kRed, // 0
kBlue, // 1
kGreen // 2

};

108

Enumeration

The numbering of the enums can be adjusted by specifying one or more initial values or by
specifying all of them explicitly.

enum Test123 {
a=1, // 1
b, // 2
c, // 3
d=7, // 7
e, // 8
f // 9

};

109

Enumeration

In C++ there are two enumeration type unscoped enumeration (enum) and since c++11
scoped enumeration (enum class).

Usually you want to use scoped enumeration, because unscoped enumeration can result in
naming conflicts and has other unexpected behaviours.

Creating a scoped enumeration is not different:

enum class Color {
kRed,
kBlue,
kGreen

};

But to access the enumerator you need to use specify the name of the enum.

Color c = Color::kRed;

110

Enumeration

The name of an enumerator in an unscoped enumeration has to be unique within the same
scope

Because of that the following code will result in a compile error:

enum KeyState {
kPressed,
kReleased

};

enum MouseButtonState {
kPressed,
kReleased

};

111

Enumeration

The same code will be valid using scoped enumeration:

enum class KeyState {
kPressed,
kReleased

};

enum class MouseButtonState {
kPressed,
kReleased

};

112

Enumeration

In addition to the problem with the name conflicts, unscoped enumerations are not type-safe:

enum ColorA {
red, green, blue

};

enum ColorB {
yellow, orange, brown

};

ColorA a = yellow; // wrong enumerator assigned

if(a == red) {
// this will be shown in the console
std::cout << "a is red even though yellow assigned" << std:endl;

}

113

Enumeration

In contrast to this scoped enumerations are type-safe.

enum class ColorA {
red, green, blue

};

enum class ColorB {
yellow, orange, brown

};

ColorA a = ColorB::yellow; // will not compile

114

Threads

threads can be used to distribute tasks across multiple processors, allowing them to run in
parallel.
Several things have to be taken into account in a multithreaded enviroment:
I Are the objects used in the thread still valid at the time they are used (whether they still

exist)?
I Do the threads access the same data and if so, is this concurrent access allowed?
I The overhead of creating and managing a thread should be smaller than the performance

gain you get from it (test the performance gain in release mode with code optimizations
active).

115

Threads

When it comes to threads, there are these important classes:
I std::thread this class encapsulates a cross platform implementation of a thread.
I std::async is used to run one task async in a thread.
I std::promise to set a value asynchronously that can be requested in another thread
I std::future allows to access the result of an async task (std::promise and

std::async)
I std::mutex is used to control concurrent access
I std::lock_guard is convenient method to acquire a lock on a std::mutex

116

Overloading

C++ allows you to specify more than one definition for a function name or an operator
in the same scope, which is called function overloading and operator overloading
respectively.
An overloaded declaration is a declaration that had been declared with the same
name as a previously declared declaration in the same scope, except that both dec-
larations have different arguments and obviously different definitions.

117

Operator overloading

Most of the build-in operators available in C++ can be redefined or overloaded.
Operators are functions with special names:
the keyword operator followed by the symbol for the operator.

I The operators :: (scope resolution), . (member access), .* (member access through
pointer to member), and ?: (ternary conditional) cannot be overloaded.

I Operators can be overloaded as member or free function.

118

Operator overloading

Operation overloading can be done using member functions or free functions.

class vec3 {
// for member functions op1 is the object itself
vec3 operator + (const vec3& op2);

}

// free function
vec3 operator + (const vec3& op1, const vec3& op2);

vec3 op1, op2;
vec3 res = op1 + op2;

119

Operator overloading

I Member functions have the advantage that they can access private and protected
members of op1

I Free functions have the advantage that additional operators can be added to any class,
even for foreign libraries

I Using free functions the first operator does does not need to be a class type, which is not
possible with member functions

// first operator is a float
vec3 operator + (const float& op1, const vec3& op2);

To define the operators consistent at the same place, the free function is often prefered over
the member function.

120

Operator overloading

The overloads of operator>> and operator<< that take a std::istream& or
std::ostream& as the left hand argument are known as insertion and extraction operators.
Since they take the user-defined type as the right argument, they must be implemented as
non-members.

std::ostream& operator<<(std::ostream& os, const T& obj)
{ // write obj to stream

return os;
}
std::istream& operator>>(std::istream& is, T& obj)
{ // read obj from stream

return is;
}

If they are not declared as friend function, only public members and methods of T can be
accessed.

121

Function overloading

I An overloaded function has multiple definitions for the same function name in the same
scope.

I They differ from each other by the types and/or the number of arguments.
I It is not possible, to overload function declaration by just changing a parameter type to

const.
I Changing a reference or pointer parameter to const will overload a function.

Thus, it is possible to overload function declarations with const keyword, which changes
the implicitly given self-reference.

I You cannot overload function declarations that differ only by return type.

122

Function overloading

void foo(int i) {}
void foo(const int i) {} //function has already been defined
int main(){

}

void foo(int i){}
void foo(int& i){}

int main(){
foo(0); //ambiguous call to overloaded function

}

123

Function overloading

void foo(int& i){
std::cout << "non-const" << std::endl;

}

void foo(const int& i){
std::cout << "const" << std::endl;

}

int main() {
int i1 = 0;
foo(i1); // prints non-const
const int i2 = 0;
foo(i2); // prints const

}

124

Function overloading

void foo(int* pi){
std::cout << "non-const" << std::endl;

}

void foo(const int* pi){
std::cout << "const" << std::endl;

}

int main() {
int i1 = 0;
foo(&i1); // prints non-const
const int i2 = 0;
foo(&i2); // prints const

}

125

Function overloading

Note: int* pi and int* const pi cannot be used for function overloading as they both
point to a mutable int.

void foo(int* pi) {}
void foo(int* const pi) {} //function has already been defined

int main(){

}

126

Function overloading

class bar
{

public:
void foo() {};
void foo() const {};

}

Possible overloading because the self-reference (implicit first function parameter) changes its
type from bar& to const bar&.

127

Templates

templates allow to create helper/utility functions or classes without the need to know the type
they are used with.
Examples for template based functions are:
I Comparison functions like max, min, accumulate, ...
I Containers of the standard library like vector, list, ...
I Helper functions like sort, find, ...

The compiler will check at compile time if the data types passed to the template based
functions or classes can be used with those.

128

Templates

Advantages:
I Only one function has to be created and can be used with all data types that meet the

conditions of the template function.
I Certain tasks can be performed that would otherwise be only possible if inheritance is used.
I Dependencies between in the code can be reduced.

Disadvantages:
I Compiler errors are not easy to understand.
I Compiler errors that might exist if used with a certain data type will only occur if those

data type are used.
I Writing template base functions/classes is not as intuitive as regular functions.

129

Templates

Without templates a function like std::max has to be created for each type the function
should be used with.
A function for int would look that way:

int max(const int &a, const int &b) {
if(a > b) return a;
else return b;

}

130

Templates

If max should also support float an additional overloading function has to be created for
float:

int max(const int &a, const int &b) {
if(a > b) return a;
else return b;

}

float max(const float &a, const float &b) {
if(a > b) return a;
else return b;

}

131

Templates

This has do be done for every data type that max should support and will result in a huge
number of nearly identical functions that only differ in their type. And it will work only for data
types that are know at the time the code was written.

To prevent the need to create a separate overloading function for each data type templates
are used.

132

Templates

The template based version of max is:

template<typename T>
T max(const T &a, const T &b) {

if(a > b) return a;
else return b;

}

The template<typename T> shows that the function has one type that is resolved at compile
time. The T is the placeholder for this data type. Because T is used for both a and b the data
type of the values passed as argument to max has to be the same.

This function does accept every data-type that can be compared using the > operator.

Sometimes you might see class instead of typename. The keyword class exists only for
backwards compatibility, but has the same meaning.

133

Templates

The compiler will now take over the task to create those overloaded functions as soon as they
are needed.

template<typename T>
T max(const T &a, const T &b) {

if(a > b) return a;
else return b;

}

float x_f = 0.1f, y_f = 0.2f;
int x_i = 10, y_i = 20;

auto max_f = max(x_f, y_f); // returns 0.2f
auto max_i = max(x_i, y_i); // returns 20

134

Templates

If the data-type passed to that function are different, the compiler will show an error message
like No matching function call for ’max’.

template<typename T>
T max(const T &a, const T &b) {

if(a > b) return a;
else return b;

}

float x_f = 0.1f;
int y_i = 10;

auto max_f = max(x_f, y_i); // will result in a compiling error

135

Templates

The data-type used for T can be set explicitly to force the use of a certain version of the
template function.

template<typename T>
T max(const T &a, const T &b) {

if(a > b) return a;
else return b;

}

float x_f = 20.1f;
int y_i = 10;

auto max_f = max<float>(x_f, y_i); // returns 20.1f

136

Templates

The data-type used for T can be set explicitly to force the use of a certain version of the
template function.

template<typename T>
T max(const T &a, const T &b) {

if(a > b) return a;
else return b;

}

float x_f = 20.1f;
int y_i = 10;

auto max_i = max<int>(x_f, y_i); // returns 20 because x_f is casted to int

137

Templates

Passing a data-type that is not comparable using > to this function will result in a compiler
error at the comparison. In this example the error would be something like Invalid operands
to binary expression. The error message depends on the kind of compiler error that would
occur for this data-type with the given operation.

class foo {};

template<typename T>
T max(const T &a, const T &b) {

if(a > b) return a; // compiling fails at this point
else return b;

}

foo x, y;

auto max_i = max(x, y); // error might also reported for this line

138

Templates

If the data-type is passed to another function the error could be something like No matching
function call to ’sqrt’.

class foo {};

template<typename T>
T sqrt_minus_one(const T &a) {

return std::sqrt(a) - 1; // compiling fails at this point
}

foo x;
sqrt_minus_one(x);

139

Templates

Templates can not only be used for simple data-types like int, float, ... but also for class
and struct. To print out the content of std::list and std::vector or any other data type
that supports iterators one template function can be created.

template<typename T>
void print_container_content(const T &container) {

for(auto const &item : container) {
std::cout << item << std::endl;

}
}

std::vector<float> v = {1,2,3,4};
std::list<float> l = {1.1f,2.1f,3.1f,4.1f};
print_container_content(v);
print_container_content(l);

140

Templates

This example also shows another useful case for the auto keyword. Because the function would
accept a container with any data-type the data-type of item depends on the container that is
passed.

template<typename T>
void print_container_content(const T &container) {

for(auto const &item : container) {
std::cout << item << std::endl;

}
}

std::vector<float> v = {1,2,3,4};
std::list<float> l = {1.1f,2.1f,3.1f,4.1f};
print_container_content(v);
print_container_content(l);

141

Templates

Without the auto keyword it would be required that the passed container has a static field that
exposes its type. Standard conform containers do this with the value_type field. To be able
to use this data-type in the code typedef typename T::value_type has to be used to give
it a name that then can be used.

template<typename T>
void print_container_content(const T &container) {

typedef typename T::value_type ValueType;

for(ValueType const &item : container) {
std::cout << item << std::endl;

}
}

142

Templates

Because the compiler generates the code for a template based function only if it is used, the
definition of the template function has to be visible for each compilation unit in which this
function is used.

main.o

preprocessed-main.cpp

�le-n.o

proprocessed-�le-n.cpp

�le-1.o

proprocessed-�le-1.cpp

For this reason it is not possible to write the definition of a template function into a separate
.cpp file, but it must be written into a .h write.
This header file must then be included in the .cpp file where the template function is used,
otherwise the linker will report an error.

143

Templates

If two .cpp use the same template function with the same data-types as argument, then the
same generated function would exist in multiple translation units.

And because the linker will not only check if all definitions for each declaration exist, but also
ensures that there are no duplicate declaration in each of the translation units, the linking
would fail.

main.o �le-n.o�le-1.o library-a library-b

executeable

144

Inline

To solve this problem those functions have to be defined as inline.

Meaning of the keyword inline is often mistakenly explained as feature to allow compilers to
optimise code: that would insert the code of the function directly at the place where the
function is called, removing the function call itself.

The meaning of the keyword inline for functions is multiple definitions are permitted rather
than inlining is preferred. Compilers are able to decide by themselves if such optimisations are
possible and useful.

A function defined entirely inside a class/struct/union definition, whether it is a member
function or a non-member friend function, is implicitly an inline function.

145

Inline

inline can also be used for non-template functions and methods if you want to place them in
the header.

void foo();
// ... more declarations

// followed by their definitions in the same header
inline void foo() { }

class foo {
void test();
// ... more declarations

};

// followed by their definitions in the same header
inline void foo::test() { }

146

Templates

A function can be defined as inline by adding the inline keyword in front of it.

template<typename T>
inline void print_container_content(const T &container) {

for(auto const &item : container) {
std::cout << item << std::endl;

}
}

Inline can also be used with non-template functions if you want to write the declaration in the
header.

147

Templates

If it is required to use the template function with a data-type that is not compatible with the
generic version of the template function, then it is possible to specialize the template for a
certain data-type.
This template function would not work with foo because it is not comparable using the >
operator.

struct foo {
int m_value;

};

template<typename T>
T max(const T &a, const T &b) {

if(a > b) return a;
else return b;

}

148

Templates

A specialized version of the max function can be created for this data-type.

template<typename T>
inline T max(const T &a, const T &b) {

if(a > b) return a;
else return b;

}

template<>
inline foo max<foo>(const foo &a, const foo &b) {

if(a.m_value > b.m_value) return a;
else return b;

}

149

Templates

Template functions can be useful to solve certain problems without the need of inheritance.

If a function is needed that accepts both DataTypeA and DataTypeB and this function has to
call aFunc.

struct DataTypeA {
void aFunc() {}

}
struct DataTypeB {

void aFunc() {}
}

150

Templates

Then inheritance and virtual could be used:

struct Base {
virtual void aFunc();

};
struct DataTypeA : public Base {

void aFunc() {}
};
struct DataTypeB : public Base {

void aFunc() {}
};

void do_something(const std::shared_ptr<Base> &obj) {
obj->aFunc();

}

151

Templates

Or you could create a template based function:

struct DataTypeA {
void aFunc() {}

};
struct DataTypeB {

void aFunc() {}
};
template<typename T>
void do_something(const std::shared_ptr<T> &obj) {

obj->aFunc();
}

152

Templates

Templates cannot only be used with functions but also with structs and classes.

template<typename T>
struct Point {

T x;
T y;

Point(T x, T y) : x(x), y(y) {}

void add(const Point<T> &pt) {
x = x + pt.x;
y = y + pt.y;

}
};

153

Templates

And also for methods inside of the class/struct:

template<typename T>
struct Point {

// ...
void add(const Point<T> &pt) {

// ...
}

template<typename aT>
void add(const Point<aT> &pt) {

x = x + pt.x;
y = y + pt.y;

}
};

154

Default parameters

A default parameter (also called an optional parameter or a default argument) is a
function parameter that has a default value provided to it.

If a value for a parameter is not supplied by the user, the default value will be used.

void printValues(int x, int y = 10, int z = 20){
std::cout << "x: " << x << " y: " << y << " z: " << z << std::endl;

}

int main(){
printValues(1); // prints x: 1 y: 10 z: 20
printValues(3, 4); // prints x: 3 y: 4 z: 20
printValues(7, 8, 9); // prints x: 7 y: 8 z: 9

}

Multiple default parameters are allowed, but all default parameters must be the rightmost
parameters.

155

Default parameters

Multiple default parameters are allowed, but all default parameters must be the rightmost
parameters.

void printValue(int x = 10, int y); // not allowed
void printValue(int x = 10, int y, int z = 20); // not allowed

Default paramters can only be declared once, either in the function declaration or function
definition.

void printValues(int x, int y = 10);

void printValues(int x, int y = 10) {
// error: redefinition of default parameter

std::cout << "x: " << x << " y: " << y << std::endl;
}

156

Default parameters

The effect of default parameters can be achieved by overloading:

void foo(int a, int b = 0);

is equivalent to

void foo(int a, int b);
void foo(int a) {

foo(a, 0);
}

This approach cannot be used for constructors!

157

std::function

std::function is a wrapper for functions. It allows to store a reference to a function that can
be called later.

Those function objects can i.e. be used to pass a custom comparison to a function.

As template parameter the std::function takes the function signature, a std::function
that should be able to wrap this function:

bool is_greater(int a, int b) {
return a > b;

}

Has to be defined as std::function<bool(int,int)>.

158

std::function

A function that would accept a different function with the signature bool(int,int) as
argument would look like this:

bool does_accept_value(int a, int b,
const std::function<bool(int,int)> &condition) {

return condition(a, b);
}

159

std::function

bool is_greater(int a, int b) {
return a > b;

}

bool is_less(int a, int b) {
return a > b;

}

bool does_accept_value(int a, int b,
const std::function<bool(int,int)> &condition) {

return condition(a, b);
}

does_accept_value(1, 3, is_greater);
does_accept_value(1, 3, is_less);

160

std::function

A std::function object could be stored in a member field for later use:

struct Task {
void callWhenFinished(const std::function<void<Task*>> &callback) {

m_callWhenFinished = callback;
}
std::function<void<Task*>> m_callWhenFinished;

}

void task_finished(Task * task) {
std::cout << "task finished" << std::endl;

}

Task task;
task.callWhenFinished(task_finished);

161

std::function

std::function are used by utility functions like sort, find_if to allow custom sort or find
conditions.

bool is_even(int val) {
return ((val % 2) == 0);

}

std::vector<int> values = {1,2,3,4};

auto it = std::find_if(values.begin(), values.begin(), is_even);

162

std::function

Before std::function was introduced this had to be done using function pointers.

void testA(int(*callback)(int)) {
std::cout << callback(2) << std::endl;

}

int test2(int val) {
return val * 2;

}

int main() {
testA(&test2);

}

Nowadays this is only needed if you work with old code or when interacting with libraries that
only have a C interface.

163

std::function

The same code using std::function:

void testA(const std::function<int(int)> &callback) {
std::cout << callback(4) << std::endl;

}

int test2(int val) {
return val * 2;

}

int main() {
testA(test2);

}

Using a std::function, it is easier to recognize the return type and arguments of the
function, and how the function pointer is called.

164

Lambda expressions

A Lambda expression constructs an unnamed function object capable of capturing variables in
scope (a closure). It allows to use functions that accept a std::function with out the need
to define a function.
This is useful if the passed function is required only at one specific place and would allow to
change:

bool is_greater(int a, int b) {
return a > b;

}

bool does_accept_value(int a, int b,
const std::function<bool(int,int)> &condition) {

return condition(a, b);
}

does_accept_value(1, 3, is_greater);

165

Lambda expressions

To this:

bool does_accept_value(int a, int b,
const std::function<bool(int,int)> &condition) {

return condition(a, b);
}

does_accept_value(1, 3, [](int a, int b) -> bool {
return a > b;

});

166

Lambda expressions

The Lamda expression starts with an [] and the return type is defined after the parameters
using ->, beside that it looks like a regular function.

[](int a, int b) -> bool {
return a > b;

}

167

Lambda expressions

The [] in front of the lambda expression denote how variables that are defined in the function
in which the lambda expression is created, are passed to the lambda function. If [] is empty,
then not variables are passed:

int main() {
Point p;
auto fun = []() -> void {

p.x = 0; // compiler error
}

}

p is not accessible within the lambda function.

168

Lambda expressions

A & within the [] instructs the compiler to pass all values defined in main as reference to the
lambda.

int main() {
Point p;
p.x = 1;
auto fun = [&]() -> void {

p.x = 20;
}
fun();
std::cout << p.x << std::endl; // will show 20

}

Now p is accessible within the lambda and refers to the same object.

169

Lambda expressions

A = within the [] instructs the compiler to pass all values defined main as copy to the lambda.

int main() {
Point p;
p.x = 1;
auto fun = [=]() -> void {

p.x = 20;
}
fun();
std::cout << p.x << std::endl; // will show 1

}

Now p is accessible within the lambda, but refers to a copy of the p in main.

170

Lambda expressions

The settings within the [] can be adapted for individual variables.

int main() {
Point p1;
Point p2;

auto fun = [p1,&p2]() -> void {

};
fun();

}

Now p1 is passed as copy and p2 by reference.

171

Lambda expressions

A lamdba function can be invoked directly without the need of storing it:

int main() {
auto val = []() -> int {

return 3;
}();
std::cout << val << std::endl; // will show 3

}

172

Lambda expressions

Lambda expressions can be used with utility functions like sort, find_if that allow custom
sort or find conditions.

std::vector<int> values = {1,2,3,4};

auto it = std::find_if(values.begin(), values.begin(),
[](int val) -> bool {

return ((val % 2) == 0);
});

173

Lambda expressions

If the compiler can determine type of the arguments then auto can be used for the argument,
and the return type can be omitted.

std::vector<int> values = {1,2,3,4};

auto it = std::find_if(values.begin(), values.begin(),
[](auto val) {

return ((val % 2) == 0);
});

174

assert

There are two ways of error checking:
I at compile-time using static_assert

I or at runtime, with i.e. assert that is defined in the cassert header.

175

assert

The assert in the cassert is a functionality that allows to do runtime-checks that are only
performed if the code is compiled in debug mode. The purpose is to create checks for
situations that should never happen.

void divide_by(float a, float b) {
assert(b!=0); // will throw an error if (b!=0) is not true

}

divide_by(1.f, 0.f);

Using assert(b!=0) here is only valid if you expect that it should never be possible to call
divide_by with b having the value 0.

176

assert

If it might be possible that b could be 0 in certain situations, then you should use exceptions
instead:

void divide_by(float a, float b) {
if(b == 0) {

throw new std::runtime_error("divide by zero not allowed");
}

}

And at the place where calling divide_by could pass 0 for the parameter b then should take
care about the exception.

177

assert

Everting that is inside of braces of assert() will not be executed if the code is not build in
debug mode. So you should never manipulate an object or a value within the assert:

int i=1;
assert(i++>0)
assert(i++>0)
std::cout << i << std::endl;

This will show 1 as output when build in release mode and 3 when build in debug mode.

178

assert

static_assert allows to do checks at compile time:
I Check if resolved types for template parameters full-fill certain conditions
I Check if the data-types of the platform for which the the code is compiled meets certain

conditions
I Check if constant values have an expected value

179

assert

To ensure that a template based function can only be used with integral data-types,
static_assert can be used in combination with std::is_integral

template <class T>
T sum_values(T a, T b)
{

static_assert(std::is_integral<T>::value,
"T has to be an integral type (short, int, long, ...)");

}

180

assert

If the code would only run reliable if the size of int is 4 byte, then a global static_assert
that checks this condition can be added:

static_assert(sizeof(int) == 4, "size of int must be 4");

int main() {
}

The code will now fail to compile if the int has a different size on the platform it is compiled
for.

181

assert

If a library exposes the version of its API as a constant variable in the header of this library,
then static_assert assert could be used to ensure that the code will always be compiled
against a compatible API version:

static_assert(sizeof(a_library::major_version) >= 2,
"The version of library ’a_library’ has to be at least 2.0");

int main() {
}

182

[[deprecated]]

In an evolving project it might happen that certain functions do not meet the overall
requirements anymore, are replaced by different functions, and should not be use any longer
because of that.

If those functions are used only a few times through out the code, then it is not a problem to
replace them directly by their successors.

If they are used at many places or if other projects depend on this code then it becomes a
time-consuming and confusing task to replace all those functions. Because you would need to
continuously do manual textual searches through the whole code to look for all calls to those
functions until all of them are replaced.

To overcome this problem the attribute specifier sequence [[deprecated]] was introduced
with C++14.

183

[[deprecated]]

To mark a function/method as deprecated the [[deprecated]] attribute specifier can be
added right before the function definition:

[[deprecated]]
void do_some_calcualtions(const std::vector<float> &list);

The compiler will now report a do_some_calcualtions is deprecated for every place
where do_some_calcualtions is still used. So a manual search is not required anymore.

184

[[deprecated]]

The [[deprecated("reason")]] attribute specifier allows to define an additional message
that will be displayed with the compiler waring.

This is useful if the functionality of the deprecated function is replaced by one or more
alternative functions. Using the Additional message allows to provide the information what
functions should be used as replacement with the compiler warning itself.

[[deprecated("use ’prepare_data’ and ’do_calcualtion’ instead")]]
void do_some_calcualtions(const std::vector<float> &list) {

prepare_data(list);
do_calcualtion(list);

}

The compiler will now report a do_some_calcualtions is deprecated: use
’prepare_data’ and ’do_calcualtion’ instead.

185

static

Meanings of the static keyword:
I internal linkage
I static local variables
I static class members

186

Storage duration

All objects in a program have one of the following storage durations:
I automatic storage duration. The object is allocated at the beginning of the enclosing

code block and deallocated at the end. All local objects have this storage duration, except
those declared static, extern or thread_local.

I static storage duration. The storage for the object is allocated when the program begins
and deallocated when the program ends. Only one instance of the object exists. All
objects declared at namespace scope (including global namespace) have this storage
duration, plus those declared with static or extern.

I dynamic storage duration. The object is allocated and deallocated per request by using
dynamic memory allocation functions (e.g. smart pointers).

I thread storage duration. The object is allocated when the thread begins and deallocated
when the thread ends. Each thread has its own instance of the object. Only objects
declared thread_local have this storage duration. thread_local can appear together
with static or extern to adjust linkage.

187

static: internal linkage

static int i = 42;
void doSomething(){

cout << i;
}

In this example, static tells the compiler to make the variable i available only in the current
translation unit (file). If another file tries to use i, perhaps using the extern keyword, it would
generate a linker error (unresolved external symbol).
The same concept applies to functions whose access you want to limit to the current file. This
way, you can name variables/functions whatever you like without risking a naming collision in
the global namespace.

188

static: local variables

void foo(){
static int callCount = 0;
callCount++;
cout << "foo has been called " << callCount << " times" << endl;

}

Variables declared at block scope with the specifier static have static storage duration but are
initialized the first time control passes through their declaration (unless their initialization is
zero- or constant-initialization, which can be performed before the block is first entered). On
all further calls, the declaration is skipped.

189

static: class members

//in .h file
class MyClass{

public:
static int FavoriteNumber; //cannot be initialized here
const static int FavoriteNumer2 = 42; // OK
static void foo();

};
//in .cpp file
int MyClass::FavoriteNumber = 42;

void MyClass::foo(){
// can’t access member variables here!

}

foo() can be called without object just with MyClass::foo().

190

Compiler flags

Invoke GNU C++ compiler from command line:

$g++ -o helloworld helloworld.cpp

With compiler flags:

$g++ -Werror -pedantic -MoreFlags -o helloworld helloworld.cpp

191

Compiler flags

With CMake:

cmake_minimum_required (VERSION 3.7)
project (HelloWorld)

set(CMAKE_CXX_STANDARD 14)

set(CMAKE_CXX_FLAGS "${ CMAKE_CXX_FLAGS } -Wall -pedantic -Wextra ")

set(SOURCE_FILES helloworld .cpp)
add_executable (HelloWorld ${ SOURCE_FILES })

192

Compiler flags

Some compiler flags for warnings (GNU compiler):
I -Wall: This enables all the warnings about constructions that some users consider

questionable, and that are easy to avoid (or modify to prevent the warning), even in
conjunction with macros.

I -Werror: Make all warnings into errors.
I -pedantic: Issue all the warnings demanded by strict ISO C and ISO C++ .
I -Wextra: Enables some extra warning flags that are not enabled by -Wall.

Note: -std=XXX changes the C++ version used (default depends on compiler version).

193

Includes and Libraries

Additional include folders and external libraries can be added with CMake.
I Includes: target_include_directories(<target> directory1 directory2 ...)

I Libraries: target_include_directories(<target> Library1 Library2 ...)

Build <target> has to be defined first, e.g. with add_executable or add_library.

194

Includes and Libraries

cmake_minimum_required (VERSION 3.7)
project (HelloWorld)

set(CMAKE_CXX_STANDARD 14)

set(CMAKE_CXX_FLAGS "${ CMAKE_CXX_FLAGS } -Wall -pedantic -Wextra ")

set(SOURCE_FILES helloworld .cpp)
add_executable (HelloWorld ${ SOURCE_FILES })

#after add_executable
target_include_directories (HelloWorld /path/to/my/ directory)
target_link_libraries (HelloWorld Library1 Library2 ...)

195

CMake: find_package

Finds and loads settings from an external project.

find_package (<package > [version]
[EXACT][QUIET][REQUIRED][COMPONENTS] ...)

If found, the following variables will be defined:
I <package>_FOUND
I <package>_INCLUDE_DIRS or <package>_INCLUDES
I <package>_LIBRARIES or <package>_LIBS
I <package>_DEFINITIONS

CMake comes with numerous modules that aid in finding various well-known libraries and
packages. You can get a listing of which modules your version of CMake supports by typing
cmake –help-module-list, or by figuring out where your modules-path is
(e.g. /usr/share/cmake/Modules/).
Modules follow the naming convention Find<package>.cmake.
Missing modules are often available online or can be written easily.

196

	Overview
	CMake
	Hello World!
	Declaration and Definition
	Preprocessor, Compiler and Linker
	Datatypes
	Castings
	STD Library
	Iterators
	Helper Functions
	IOStreams
	Stack and Heap
	Copy, Reference and Pointer
	raw, shared and unique
	nullptr, NULL and 0
	Classes and Structs
	Namspaces
	const
	constexpr
	Enumerations
	Threads
	Overloading
	Templates
	Default Parameters
	lambda
	assert
	static
	Compiler flags
	Includes and Libraries

