
Modeling in Computer Graphics
Exercise Course

25 April 2018
Till Niese – till.niese@uni.kn

graphics.uni.kn



Setting up the Framework

To use and run the Framework following things required:
I And IDE of your choice that supports C++14
I CMake: a cross-platform tool to create project files
I GLFW: a multi-platform library for OpenGL
I A laptop that supports at least OpenGL 3.3
I Boost only required if the compiler does not support C++ filesystem
I Optionally libpng to read png images.

If you have problems with setting up the project then come to Z1003 at the 02.05.2018
at 13:30. Please sendme an Email with the information what OS you use.

02



Popular IDEs with CMake support (selection).

IDE (Integrated Development Environment) that can be used in combination with
CMake

CLion QtCreator Visual Studio XCode

Linux x x
Windows (x) x
Mac OS X x (x) x
Free 30 days x x x

Note: Using CLion does NOT work right now under windows, due to a problemwith
glfw. QtCreator under Windows and OS X requires the building tools to be installed. A
free academic account for CLion can be requested using your @uni-konstanz.de email
address at https://www.jetbrains.com/shop/eform/students

03

https://www.jetbrains.com/shop/eform/students


CMake

CMake is an open-source, cross-platform family of tools designed to build, test and
package so�ware.
CMake is used to control the so�ware compilation process using simple platform and
compiler independent configuration files, and generate nativemakefiles and
workspaces that can be used in the compiler environment of your choice.
At least CMake 3.0 is required to build the project.

04



Installing the dependencies on Debian

To install all dependencies on Debian you can use aptwith the command
apt-get install cmake cmake-gui glfw3 libpng-dev libboost-all-dev.

You might also need to install the following dependencies
apt-get install mesa-common-dev libx11-dev libxmu-dev libxi-dev
xorg-dev libxrandr-dev libXxf86vm-dev libglu1-mesa-dev.

If your package manager does not provide glfw3 then you need to build it form source:

How to do this is described here

At the end you need to use sudo make install to copy the library to the right place

05

http://stackoverflow.com/questions/17768008/how-to-build-install-glfw-3-and-use-it-in-a-linux-project
http://stackoverflow.com/questions/17768008/how-to-build-install-glfw-3-and-use-it-in-a-linux-project


Installing the dependencies onmacOS

To install all dependencies onmacOS you can either usemacports
https://www.macports.org/ using the command
port install glfw libpng cmake boost
Or homebrew https://brew.sh/index_de.html

06

https://www.macports.org/
https://brew.sh/index_de.html


Installing the dependencies on Windows

Installing all dependencies on Windows:
I CMake: Download CMake fromwww.cmake.org
I Boost binaries can be downloaded here
https://sourceforge.net/projects/boost/files/boost-binaries/1.64.0/. Depending on
the IDE you use you need to choose the correct binary version. If you use VS 2015
then boost ist not required.

I The GLFW binaries can be downloaded on you should choose the correct bit
version for your system. The GLFW binaries only support VisualStudio up to 2015
right now. 2017 is not supported.

07

https://cmake.org/
https://sourceforge.net/projects/boost/files/boost-binaries/1.64.0/
http://www.glfw.org/download.html


Installing the dependencies on an other OS

If you OS is not listed here then write me an Email so that I can lookup how to install the
dependencies for the system.

08



Build the Framework with CLion

Click onOpen Project... in the start screen, or chooseOpen... in the menu and select
the CMakeLists.txt file in the root of the Framework director. You should see a
dropdownmenu in the top right corner of the window, there you should select simple
instead of cgfw_core

09



Build the with Xcode and Visual Studio

Open cmake-gui and use the directory where the framework is located (there is the
CMakeLists.txt) as source folder:
I set thewhere to build to the subdirectory build of the framework dir
I run configure, choose compiler add paths, run configure, add paths
I generate
I open the generated project and build it using your IDE

10



Finished

If you program compiles and run then you should see a rotating coloured triangle.

If you have problems with setting up the project then come to Z1003 at the 02.05.2018
at 13:30. Please sendme an Email with the information what OS you use.

11



Framework

The Framework provides on object oriented wrapper to the OpenGL API. And takes care
about common pitfalls that might be encounter if the OpenGL API is used directly.

The naming of the classes andmethods is as close as possible to the OpenGL API.

This should allow to easily adapt code that can be found on tutorial websites like:
I http://www.opengl-tutorial.org/

I https://learnopengl.com/

12

http://www.opengl-tutorial.org/
https://learnopengl.com/


Pipeline Input and Output

The Input and Output of the Graphics Pipeline in OpenGL are:
I Vertices - Is the input unit to graphics pipeline (but might also be the Output in
TransformFeedback or ComputeShading)

I Fragments - The fragments are written to the screen or an o�screen FrameBu�er
and result in the pixel color.

13



Shader Program

A Shader Program is used to process the Input Vertices and creates the Fragments as
output.

I Vertex Shader - receives Vertices as input and used to do transformations on the
data.

I Geometry Shader (optional) - used to create additional Vertices out the data
passed from the Vertex Shader

I Fragment Shader - creates the fragments/pixels that are output to the
FrameBu�er/Window

For Transform Feedback the Fragment Shader is not used. The output of the shading
pipeline is passed to output bu�er.

14



Shader Program

The Shader Program is represented by the class cgfw::gl::Program.

The type of the shaders is determined by file extension.

auto programSolid = std::make_shared<cgfw::gl::Program>("Solid Shader");
programSolid->attachShaders("shaders/solid.frag", "shaders/solid.vert");

The Framework does hot reloading if a Shader was changed. So there is no need to
restart the Program if changes are made to the shader.

15



Vertex Bu�er Object

A Vertex Buffer Object is a memory container that holds the data that is passed to
the Shader Program.

A VBO is represent in the library by the class cgfw::gl::Buffer. This class has a
similar interface as a std::vector:

auto objData = std::make_shared<cgfw::gl::Buffer<VertexData>>();

16



Vertex Bu�er Object

The data stored in a VBO can not be accessed the same time on the CPU side (Host) or on
the GPU side (Device). Tomodify the data on the Host its usage hast to be locked for that:
This can be either done explicitly using std::lock_guard:

std::lock_guard<cgfw::gl::Buffer<VertexData>> guard(*objData);

Or implicitly using the updatemethod.

objData->update([](cgfw::gl::Buffer<VertexData>& data) {
// update the buffer content

});

17



Vertex Array Object

A Vertex Array Object holds the information how the data of one or more Vertex
Buffer Object is passed to the Shader Program.

struct VertexData {
glm::vec3 position;
glm::vec3 normal;
// ...

};

auto objVao = std::make_shared<cgfw::gl::VertexArray>();

objVao->attribPointer("position", objData, &VertexData::position);
objVao->attribPointer("color", objData, &VertexData::color);
// ...

It represents the Object that will be rendered by the Program.
18



Vertex Array Object

The name passed as first argument to attribPointer corresponds to the name of the
attribute in the vertex shader. The &VertexData::position is used to define which
member of the struct has to be used for this attribute.

objVao->attribPointer("position", objData, &VertexData::position);
objVao->attribPointer("color", objData, &VertexData::color);

in vec3 position;
in vec3 color;

The name of the attribute and the member do not need to be equal.

19



Vertex Array Object

To render an Object the VAO has to bound, in the Framework this is done by passing the
VAO to the drawmethod of the Program.

programSolid->draw(objVao, GL_TRIANGLES, 0, objData->size());

20



Uniforms and Uniform Bu�er

Uniforms and Uniform Bu�er are used to pass informations like View and Projection
Matrix, LightPosition or any other global data to the Shader Program.

Uniforms can be set using the setmethod:

programSolid->set("model", model);
programSolid->set("tex", texture);
programSolid->set("shader_data", buffUniform);

21



Uniforms and Uniform Bu�er

Uniform Bu�ers are like VBO, except that they only hold one element.

struct UniformShaderData {
glm::vec3 cameraPos;
float align1; // alignement value
glm::vec3 lightPos;
float align2; // alignement value
glm::mat4 view;
glm::mat4 proj;

};

The alignment the data in a Uniform Bu�er is defined in the shader. To use the same
bu�er with all shaders layout(shared) has to be use. The data has to be aligned
according the OpenGL standard.

22



Uniforms and Uniform Bu�er

The Framework provides a functionality to check if the alignment of the fields of the
uniform bu�er is correct, and will report and error in the console if the alignment does
not match.

buffUniform->uniformPointer("cameraPos", &UniformShaderData::cameraPos);
buffUniform->uniformPointer("lightPos", &UniformShaderData::lightPos);
buffUniform->uniformPointer("proj", &UniformShaderData::proj);
buffUniform->uniformPointer("view", &UniformShaderData::view);

23



Textures

The image data can be read using the cgfw::utils::read_image_linear function.

std::vector<unsigned char> imageData;
GLenum type;
unsigned int width, height;
GLint alignment;
glGetIntegerv(GL_PACK_ALIGNMENT, &alignment);

// read the image and linearize it
cgfw::utils::read_image_linear("image.png", imageData, type,

width, height, alignment);

24



Textures

This image data can then be used to create a new Texture and pass the data to it:

// create a new texture
auto texture = std::make_shared<cgfw::gl::Texture>(GL_TEXTURE_2D);
texture->setTexureWrapS(GL_REPEAT);
texture->setTexureWrapT(GL_REPEAT);
texture->setMinFilter(GL_LINEAR_MIPMAP_LINEAR);
texture->setMagFilter(GL_LINEAR);
// write the data to the texture
texture->image2D(0, GL_RGBA16, width, height, type, imageData);

25



Textures

To create a cubemap Texture GL_TEXTURE_2D has to be replaced with
GL_TEXTURE_CUBE_MAP, and the side for which the image has to be set has to be passed
to image2D:

// create a new texture
auto texture = std::make_shared<cgfw::gl::Texture>(GL_TEXTURE_CUBE_MAP);

// ...

texture->image2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X,
0, GL_RGBA16, width, height, type, imageData);

You have to set the images for all six sides otherwise the cubemap texture is not
complete.

26



Textures

A�er all images of the texture have been set the Mipmap has to be created.

auto texture = std::make_shared<cgfw::gl::Texture>(GL_TEXTURE_2D);
// ...
texture->image2D(0, GL_RGBA16, width, height, type, imageData);
// ...
texture->generateMipmap();

If the mipmap is not create and then the texture might appear black.

27



Textures

The texture then has to be passed to the shader program using:

rogramSolid->set("tex", texture)

In the shader, the texture is thenmade available as a uniform as follows:

uniform sampler2D tex; // a 2d texture
uniform samplerCube tex; // a cube map texture

28



GLM

The implementation of GLM is based on the OpenGL Shader specification. And provides
basic data types like glm::vec3, glm::vec4, glm::mat3, glm::mat4, ... .
That data types itself only hold the data. The manipulation of those data types is done
using helper functions.
To get the length of a vector the function glm::length is used.

auto vec = glm::vec3(2,0,0);
float length = glm::length(vec);

Themethod length returns the number of components the data type has and is 3 for a
glm::vec3.

auto vec = glm::vec3(2,0,0);
int numberOfComponent = vec.length();

29



GLM

The documentation of GLM can be found on glm.g-truc.net.

This site is currently not reachable from the University network.
We will upload the PDF to our website.

30



Exercise 1

I Become familiar with the framework and the glm library.
I Implement a camera that allows movement trough the scene using keyboard and
mouse

I Implement a Skybox using a cubemap

Due date 16.5.2018.

31



Exercise 1

Listening to events in the framework is done registering event listeners to the window
object:
I MouseMoveEvent
I MouseButtonEvent
I KeyEvent

wnd->addListener<cgfw::KeyEvent>([](cgfw::KeyEvent& evt) {
});

OR

void keyEvent(cgfw::KeyEvent& evt) {
};

wnd->addListener<cgfw::KeyEvent>(keyEvent);

32



Exercise 1

The MouseMoveEvent has four members:

double x;
double y;
double dx;
double dy;

x and y hold the current mouse location. dx and dy hold the delta of the mouse
movement of the last mouse position.

33



Exercise 1

The MouseButtonEvent has this members:

double x;
double y;
// ...
int button;
bool leftButton;
bool rightButton;
bool middleButton;
EventAction action;

x and y hold the current mouse location. action has one of the values PRESS or
RELEASE.

34



Exercise 1

The KeyEvent has this members:

bool ctrlKey;
bool shiftKey;
bool altKey;
bool metaKey;
KeyCode code;
EventAction action;

code holds the information which ke was pressed. action has one of the values PRESS,
RELEASE or REPEAT.

35



Exercise 1

A Skyboxes is an easy technique to create the illusion of environment in an infinite
distance. It uses a six sided cubemap, as a look up source:

36



Exercise 1

Creating a cubmap is done using GL_TEXTURE_CUBE_MAP as texture target:

auto skyBox = std::make_shared<cgfw::gl::Texture>(GL_TEXTURE_CUBE_MAP);

And setting the data using GL_TEXTURE_CUBE_MAP_POSITIVE_X,
GL_TEXTURE_CUBE_MAP_NEGATIVE_X, ... to store the image data for the cube sides.

This can also be done using a for loop starting with
GL_TEXTURE_CUBE_MAP_POSITIVE_X:

skyBox->image2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGBA16, width,
height, type, imageData);

https://learnopengl.com/#!Advanced-OpenGL/Cubemaps

37

https://learnopengl.com/#!Advanced-OpenGL/Cubemaps

	CMake

